
Efficient Additions and Montgomery Reductions of
Large Integers for SIMD

Pengchang Ren, Reiji Suda, and Vorapong Suppakitpaisarn
The University of Tokyo, Tokyo, Japan

Email: splight@gmail.com, reiji@is.s.u-tokyo.ac.jp, vorapong@is.s.u-tokyo.ac.jp

Abstract—This paper presents efficient algorithms, designed
to leverage SIMD for performing additions and Montgomery
reductions on integers larger than 512 bits. The existing algo-
rithms encounter inefficiencies when parallelized using SIMD
due to extensive dependencies in both operations, particularly
noticeable in ARM’s SVE where SIMD operations are costly. To
mitigate this problem, a novel addition algorithm is introduced
that simulates the addition of large integers using a smaller
addition, quickly producing the same set of carries. These carries
are then utilized to perform parallel additions on large integers.
For Montgomery reductions, serial multiplications are replaced
with precomputations that can be effectively calculated using
SIMD extensions. Experimental evidence demonstrates that these
proposed algorithms substantially enhance the performance of
state-of-the-art implementations of several post-quantum cryp-
tography algorithms. Notably, they deliver a 30% speed-up from
the latest CTIDH implementation, an 11% speed-up from the
latest CSIDH implementation in AVX-512 processors, and a
7% speed-up from Microsoft’s standard PQCrypto-SIDH for
SIKEp503 on A64FX.

Index Terms—arithmetic for cryptography, Montgomery re-
duction, additions, SIMD, AVX-512, SVE

I. INTRODUCTION

Prime field arithmetic forms the basis of many public-key
cryptography algorithms, including RSA, ECDH, and various
post-quantum cryptosystems such as SIKE [1], CSIDH [2],
and CTIDH [3].

The increasing availability of SIMD instructions on modern
processors has highlighted the importance of utilizing these
instructions to optimize the latency performance of large
prime-field arithmetic. Recent research has shown that the
latest support for 52-bit integer multiplication for AVX-512 on
x64 can efficiently optimize prime field arithmetic for either
throughput or latency [4], [5].

On the other hand, attempts to use ARM’s Neon instructions
have yielded little improvement for latency [6], [7]. This could
be because Neon only allows for 32-bit integer multiplication
and 128-bit SIMD, which may not be suitable for prime field
arithmetic when dealing with primes as large as 512 bits.

ARM has recently announced the introduction of a new
SIMD extension known as SVE, designed to enhance their
ARMv8 instruction set. SVE offers several improvements
over Neon, including support for 64-bit integer multiplica-
tion and the ability to process larger vector lengths. In our
prior research, we have enhanced the throughput of SIKE
on SVE [8]. Furthermore, to further optimize latency perfor-
mance, Edamatsu et al. [9] have proposed a low-latency mul-

tiplication technique for large numbers specifically designed
for SVE.

Previous research has primarily focused on optimizing the
latency of multiplication operations using SIMD instructions
and assumed that the algorithms for calculating addition and
Montgomery reduction are already efficient. However, this
assumption may not hold true for certain SIMD instructions,
such as SVE, where additions and reductions can be expensive.
This research has shown that these operations can become a
bottleneck in various calculations, particularly in post-quantum
cryptographic algorithms. Therefore, it is crucial to develop
efficient algorithms that consider addition, multiplication, and
reduction operations to fully leverage the benefits of SIMD
instructions.

A. Our Contributions

The costs of additions and Montgomery reductions in SIMD
are due to their long dependency chains. When using carry
propagate adders, adding more significant limbs requires wait-
ing for carries from less significant limbs before starting the
addition. Similarly, Montgomery reductions are typically car-
ried out limb by limb [10], [11]. The results of the calculation
of the less significant limbs are required for the calculation of
the more significant ones. This research aims to break these
dependency chains.

Section IV introduces a novel addition algorithm that uti-
lizes smaller additions to simulate the addition of large integers
that require multiple limbs to store. The smaller additions
give different results than the original large additions but
produce the same set of carries. By using these carries, parallel
additions on each limb of the large integers can be performed.
For instance, the calculation of carries for an addition of 512-
bit integers, requiring 8 limbs for storage in SVE, can be
achieved by performing an addition of 64-bit integers, which
requires only a single limb. The 64-bit addition can then serve
as a basis to derive all the required carries for the original
addition, enabling the parallel execution of additions across
the eight limbs, predicated on the obtained carries.

Section V presents two techniques for Montgomery re-
duction. The first technique can be applied to any prime
number, while the second is specifically designed for prime
numbers of the form 2ℓF −1. In the first technique, we notice
that serial calculations in the reduction can be replaced with
additions of independent multiplication results, which can be
computed efficiently using SIMD. In the second technique, it

is demonstrated that reductions on such prime numbers can
be performed using just two large multiplications. Then, by
leveraging concepts from [5], [12], the Karatsuba algorithm is
utilized to speed up these large multiplication operations.

Lastly, experimental results for the proposed techniques are
shown in Section VI. For addition, benchmark results show
that the proposed algorithm is faster than the carry propagation
addition implemented in AVX-512 by up to 2.5 times. The
proposed SIMD addition is faster than the carry propagation
addition implemented in x64 by up to 32%.

The proposed techniques for Montgomery reduction have
shown significant speed improvements over previous imple-
mentations. Benchmark results demonstrate a 11% speedup
for Montgomery multiplication and a 36% speedup for Mont-
gomery squaring, compared to the state-of-art implementation
in AVX-512 implementation by Cheng et al. [5]. Compared to
x64 implementation, the improvement is 97% for Montgomery
multiplication and 151% for Montgomery reduction.

Furthermore, the proposed techniques can accelerate the
calculation of CSIDH by 11% compared to the work by Cheng
et al. [5], and an 77% compared to x64 implementation.

In addition, a 30% increase in speed can be achieved com-
pared to the latest implementation of CTIDH, by Benegas et
al. [3] in SVE. Moreover, the proposed Montgomery reduction
for the prime number p503 = 22503159 − 1, which is the
standard prime used for SIKE, proves to be 26% faster than
the reduction in Microsoft’s standard PQCrypto-SIDH. This
contributes to an overall 7% improvement in computation for
SIKE.

II. PRELIMINARIES

A. Large Integer Representation

The implementation of prime field arithmetic requires care-
ful consideration of how to store large integers in memory.
An approach is to use radix-2ω , where a large integer is stored
using several ω-bit integers. One ω bit integer is called a limb.
If ω is equal to the machine word size, this is referred to as
using the native radix, while if ω is smaller, it is called reduced
radix. Throughout this paper, the symbol n is used to represent
the number of limbs required to store a large integer.

Suppose a large integer requires 8 limbs to store and a single
register can hold up to 8 limbs. It is possible to use one register
to store all 8 limbs of the integer. Alternatively, it is possible to
utilize two registers to pack two integers, storing four limbs of
each integer in each register. The representation of the packing
of x integers together is referred to as x-way packing.

The optimal values of x and ω can vary depending on the
architecture and prime field being used, and selecting them is
outside the scope of this investigation.

B. Single Instruction Multiple Data (SIMD)

SIMD instructions are a class of instructions that enable the
manipulation of multiple data elements in a single instruction.
They are found in modern CPUs, including AVX-512 on x64,
Neon, and SVE on ARM. SIMD instructions offer different
levels of support for various calculations and different vector

TABLE I: Latency in clock cycles for instructions and Cycles
per Instruction (CPI) for Intel Tigerlake’s x64 and AVX-512,
as well as Fujitsu A64FX’s A64 and SVE

Operation Tigerlake x64 Tigerlake AVX-512 A64FX A64 A64FX SVE
Latency CPI Latency CPI Latency Latency

Cache Access 3 0.5 4 0.5 5 11
Addition 1 0.25 1 0.5 1 4

Logic 1 0.25 1 0.5 1 4
Shift 1 0.5 1 1 2 4

Compare 1 0.25 3 1 1 4
Popcount 3 1 3 1 - 4

Multiplication, 64-bit 3 1 - - 5 9
Multiplication, 52-bit - - 4 1 - -

Table lookup/Cross-lane - - 3 1 - 6

length. For instance, AVX-512 has a vector length of 512 bits,
Neon’s vector length is 128 bits, while SVE ranges from 128
to 2048 bits.

A single vector has the capacity to store multiple integers,
with each integer occupying a specific section of memory
referred to as a lane. AVX-512 register can be interpreted as
64 8-bit lanes, 32 16-bit lanes, 16 32-bit lanes or eight 64-
bit lanes. With most SIMD instructions, performing an oper-
ation using SIMD means applying that operation to all lanes
of vectors simultaneously. For example, adding two vectors
involves adding each lane of the two vectors independently.
In this study, the terms SIMD ADD and SIMD SUB denote
the process of carrying out parallel addition and subtraction
operations using SIMD technology. For multiplication oper-
ations, when two one-limb operands yield a two-limb result,
the terms SIMD MUL H and SIMD MUL L are employed.
These denote the process of calculating the more and less
significant limbs of the outcome, respectively. In contrast,
there are instructions designed to move data across lanes,
like the table lookup instruction TBL in SVE. These are
referred to as cross-lane instructions and are generally more
computationally expensive.

Intel CPUs from the 10th generation and later have ex-
tensively incorporated AVX-512. While Neon is available on
numerous modern ARM CPUs, SVE with 512-bit vectors
is now exclusively available on CPUs intended for high-
performance computing, such as A64FX.

Table I presents latency in cycle times and throughput
metrics as cycles per instruction (CPI) for both Tigerlake’s
x64 and AVX-512. It also includes latency figures for A64 and
SVE on Fujitsu’s A64FX [13], [14]. Latency denotes the time
required to complete a single computation for the instructions,
while throughput is defined as latency over the number of
instructions that can be processed simultaneously. Throughput
data is typically considered when executing several instruc-
tions concurrently, whereas latency data applies to tasks that
cannot be carried out in parallel. Regrettably, Fujitsu has not
supplied throughput information for each instruction, resulting
in the listing of only latency data.

Avoiding instructions with high latency is desirable for
any program. Table I demonstrates that cache access incurs
a significant cost for all instruction sets listed, highlighting
the need to minimize data movement between SIMD registers
and general purpose registers. This is also true for cross-lane

instructions.
The table also highlights that all SVE instructions on

A64FX exhibit high latency. Typically, when optimizing cal-
culations, the number of additions and comparisons is not a
major concern as they are not as expensive as other operations.
However, in the case of SVE, their costs are significant and
cannot be ignored.

C. Isogeny-based Cryptography: CSIDH, CTIDH, and SIKE

CSIDH [2] is an isogeny-based cryptography algorithm
developed by Castryck et al. While the original implementa-
tion is not constant-time, which could lead to timing attacks,
several attempts have been made to find a fast constant-time
implementation [15], [16], [17], [18]. Unfortunately, according
to the discussion in Cheng et al. [5], these implementations
are significantly slower than the implementation which is
not constant-time. CTIDH is a new algorithm developed by
Banegas et al. [3] that improves constant-time performance,
with over 60% speed-ups achieved by changing the key space
of CSIDH.

Both CSIDH and CTIDH are defined over a finite field Fp,
where p = (4·

∏
li)−1 and li-s are small odd primes. Although

both algorithms offer various primes to meet different security
levels, most optimizations for CSIDH have been discussed for
primes with 511 bits [5], [15], [16], [17], [18]. Most source
codes for CSIDH and CTIDH are written in x64 assembly. Up
to our knowledge, only implementation by Jalali et al. [16]
is on ARM architecture. A constant-time implementation of
CSIDH for ARM architecture was proposed in the same work,
but it was computationally intensive. Currently, there is no
implementation for CTIDH on ARM architecture.

SIKE [1] is another isogeny-based cryptosystem based
on Supersingular Isogeny Diffie-Hellman (SIDH) key ex-
change [19]. It was one of the most well-known isogeny-
based cryptosystem, and has been proposed as one of the four
alternate candidates in the fourth round of NIST’s PQC stan-
dardization process. However, in August 2022, it was reported
that an algorithm [20] could attack the current implementation
of SIKE, and subsequent research showed that minor changes
do not make the protocol secure [21], [22]. While none of the
algorithms proposed in this paper are exclusive to SIKE, but,
as the implementations of SIKE were highly optimized, they
are used as benchmarks of this work.

The protocol of SIKE is defined over the quadratic extension
of the finite field Fp2 , where p = 2e13e2 − 1 and 2e1 ≈ 3e2 .
It defines four parameter sets, with prime bit lengths of
434, 503, 610, and 751. Microsoft has an implementation
of SIKE called PQCrypto-SIDH [23], optimized for x64 and
ARM architecture using handwritten assembly. The reference
implementation used in this paper is SIDHv3.5.

III. PREVIOUS APPROACHS ON ADDITIONS AND
MONTGOMERY REDUCTIONS

A. Carry-Propagate Addition

One way to implement addition is through digit-by-digit
carry propagation. The addition is calculated for each limb,

starting from the least significant limb to the most significant
limb, while considering the carry. Subtraction can be carried
out using a similar approach.

General purpose instructions can calculate the addi-
tion between two large integer A and B efficiently.
For A,B stored in radix 2ω , denote the i-th least
significant limb of A and B by Ai and Bi, i.e.,
A =

∑n−1
i=0 2i·ωAi, and B =

∑n−1
i=0 2i·ωBi. The carry prop-

agation addition of A and B can be simply implemented
with repeatedly calculating Di ← Ai +Bi + ci mod 2ω and
ci+1 ← ⌊(Ai +Bi + ci)/2

ω⌋, starting with c0 = 0.
Unfortunately, the carry propagation algorithm performs

poorly in SIMD. In order to obtain a value ci for the (i+1)-
th limb addition, all less significant limbs must be added first,
creating a long dependency chain that cannot be parallelized.
Additionally, the result ci+1 is stored in the i-th lane of
the SIMD register, but it is needed in the (i + 1)-th lane,
requiring an expensive cross-lane operation unless each SIMD
register only contains one limb. These issues are severe when
implementing on A64FX, where all SVE instructions have
high latency, as shown in Table I.

B. Carry-Select Addition [24]

The carry-select addition approach was introduced to cir-
cumvent the long dependency chain in carry-propagate addi-
tion. In carry-propagate addition, it is necessary to wait for
the value of ci before computing the sum Di = Ai +Bi + ci.
Rather than waiting for the availability of ci ∈ {0, 1}, carry-
select addition computes the sum results for both potential
values of ci in advance. That is, the adders calculate D

(0)
i =

(Ai + Bi) mod 2ω , D(1)
i = (Ai + Bi + 1) mod 2ω , c(0)i+1 =

⌊(Ai + Bi)/2
ω⌋, and c

(1)
i+1 = ⌊(Ai + Bi + 1)/2ω⌋ for i > 1.

Since D0 = (A0 +B0) mod 2ω and c1 = ⌊(A0 +B0)/2
ω⌋, it

becomes feasible to use the ci value from the less significant
limb to select the value of Di and ci+1 at the more significant
limb, meaning Di = D

(ci)
i and ci+1 = c

(ci)
i+1.

With this approach, it becomes feasible to eliminate ad-
ditions from the lengthy dependency chain through the pre-
computation of D

(0)
i , D

(1)
i , c

(0)
i+1, and c

(1)
i+1. However, this

elimination needs the computation of results for both ci values,
effectively doubling the calculation effort. Furthermore, the
long dependency chain continues to persist within the selection
process.

C. Kogge-Stone Vector Addition

An approach presented in [25], based on the Kogge-Stone
vector addition technique [26], demonstrates high efficiency in
the AVX-512 architecture. This approach uses specific AVX-
512 instructions to compute all ci values concurrently, thereby
mitigating the lengthy dependency chain found in the carry-
select adder.

We will not discuss the specifics of this approach due to
its reliance on unique AVX-512 instructions, which limits its
applicability to other architectures. Moreover, these instruc-

tions yield ci values on a register called mask registers1. This
requires a transfer of these values to general-purpose registers.
Although this transfer operation is relatively quick on AVX-
512, it needs significantly more time-consuming on SVE.

Nevertheless, we use this approach as a benchmark for
the AVX-512 architecture. We also attempt to implement this
approach on SVE, using it as our benchmark in this respective
architecture.

D. Montgomery Reduction [10]
Let R = 2ωn, and let R−1 be an integer that satisfies

R · R−1 ≡ 1 (mod p). Define a Montgomery reduction of T
when T < pR as REDC(T), which calculates TR−1 mod p.
Additionally, define a partial Montgomery reduction function,
denoted as redc(T, k) for 0 < k ≤ ωn, as a function which re-
turns a positive integer such that redc(T, k) ≡ T2−k (mod p).
Calculating modular reduction can be done by multiplying T
with R−1 and performing the modulo operation. However, the
modulo operation can be computationally expensive.

Algorithm ExistingGenericRedc: Generic Mont-
gomery reduction

Input: T < pR, where p < 2ωn, r = 2ω, R = 2ωn,
r−1, R−1 are positive integers such that
rr−1 ≡ 1 mod p, RR−1 ≡ 1 mod p, and
p′ ← rr−1−1

p

Output: REDC(T) = TR−1 mod p
1 T (0) ← T
2 for i = 1 to n do
3 Q← T (i−1)p′ mod r
4 T (i) ← (T (i−1) +Qp)/r
5 end
6 if T (n) > p then
7 T (n) ← T (n) − p
8 return T (n)

Consider the Algorithm ExistingGenericRedc. It is shown
in [10] that the variable T (i) is an integer and is a partial
reduction redc(T, ωi). Hence, T (n) ≡ T2−ωn ≡ TR−1

(mod p). It is also shown in the paper that, by the final
reduction at Lines 6-7, the value of T (n) at Line 8 is smaller
than p, and hence T (n) = TR−1 mod p = REDC(T).

By utilizing the algorithm, computing the modulo p can be
avoided. Instead, the reduction can be calculated by a series
of modulo and division operations using r = 2ω . Since all the
integers are stored in binary, modulo and division by r can be
computed by discarding some of the binary words if radix-2ω

is used.

E. Montgomery Representation and Multiplication
In this paper, elements are taken from the prime field

Fp = {0, . . . , p−1}. The multiplication of A,B ∈ Fp is com-

1While SVE refers to mask registers as predicate registers, we have opted
to maintain consistency in terminology within this paper. Consequently,
predicate registers in SVE will also be referred to as mask registers to ensure
straightforward understanding.

puted as A · B mod p, where the multiplication can be done
efficiently, but the modulo operation afterwards can be time-
consuming. Montgomery reduction in the previous subsection
helps reducing the computation of the multiplication [10].

Recall from the previous subsection that R = 2ωn > p.
Since p is an odd number, it is coprime to R. Therefore, for
any A,B ∈ Fp with A ̸= B, AR ̸≡ BR (mod p). Hence,
A can be represented with another representation Â = AR
mod p, known as the Montgomery representation of A.

The application of the Montgomery reduction to ÂB̂ en-
ables the calculation of the Montgomery representation of
AB. This is because REDC(ÂB̂) = (AR)(BR)R−1 mod
p = (AB)R mod p. This approach allows us to perform
the reduction operation following each multiplication rather
than incurring the costly modulo operation after every multi-
plication. When numbers are represented using Montgomery
representation, this approach can substantially reduce the cost
of multiplication in prime field arithmetic since the reduction
operation is much less expensive than the modulo operation.
The multiplication of two numbers in the Montgomery repre-
sentation is referred to as Montgomery multiplication.

F. More Efficient Montgomery Reduction for Primes in the
Form 2ℓF − 1 [27]

A prime number p is considered to be λ-Montgomery-
friendly if it satisfies the condition p ≡ ±1 mod 2λ·ω , where λ
and ω are positive integers. Many cryptographic systems, such
as SQISign [28], CGL hash function [29], and SIKE [1], use
prime numbers of the form p = 2ℓF − 1 as moduli. For any
λ ≤ ℓ/ω, these numbers are in the form p ≡ −1 mod 2λ·ω ,
and therefore, are λ-Montgomery-friendly. For the simplicity
of our algorithm and explanation, we assume that p ≡ −1
mod 2λ·ω or p+ 1 is divisible by 2λ·ω in the remaining part
of this subsection.

Algorithm ExistingSpecificRedc: Montgomery reduc-
tion with λ-Montgomery-friendly modulus [27]

Input: p < 2ωn is a prime number such that p ≡ −1
(mod 2λ·ω), r = 2ω , R = 2ωn, T < pR,
m ≤ λ, λ0 ← ⌊n/m⌋, λ′

0 ← n mod m
1 , and M ← (p+ 1)/2λ·ω . Output: TR−1 mod p
2 T (0) ← T
3 for i← 1 to λ0 do
4 Q← T (i−1) mod 2m·ω

5 T (i) ←
⌊
(T (i−1) + 2λ·ωQ ·M)/2m·ω⌋

6 end
7 T (λ0+1) ← T (λ0)

8 if λ′
0 ̸= 0 then

9 Q← T (λ0) mod 2λ
′
0·ω

10 T (λ0+1) ←
⌊
(T (λ0) + 2λ·ωQ ·M)/2λ

′
0·ω
⌋

11 end
12 if T (λ0+1) ≥ p then
13 T (λ0+1) ← T (λ0+1) − p
14 return T (λ0+1)

The Algorithm ExistingSpecificRedc suggests that for such
values of p and m ≤ λ, one can reduce the number of loop cy-
cles in the Algorithm ExistingGenericRedc from n to ⌈n/m⌉.
However, each iteration in the Algorithm ExistingSpecificRedc
has a more complex computation compared to the Algorithm
ExistingGenericRedc. Specifically, while Line 4 of the Algo-
rithm ExistingGenericRedc involves multiplying the n-limb
integer p by the 1-limb integer Q, the corresponding operation
in Line 4 of the Algorithm ExistingSpecificRedc multiplies the
m-limb integer Q with the (n− λ)-limb integer M .

IV. PROPOSED SIMD ADDITION

We propose an addition and carry propagation for SIMD
in Algorithm ProposedAdd. The algorithm uses some ideas
from the carry-select adder [24], which is described in Section
III-B. To eliminate the long dependency chain associated with
carry selection, the algorithm simulates the addition of larger
integers via the summation of smaller ones. As a result, all
the carries are obtained in the general-purpose registers, thus
bypassing the need for transferring data from mask registers
to general-purpose ones as required by the approach discussed
in Section III-C.

Algorithm ProposedAdd: Proposed SIMD addition
Input: integer A,B in radix-2ω , where

A =
∑n−1

i=0 2i·ωAi, B =
∑n−1

i=0 2i·ωBi, and
Ai, Bi < 2ω

Output: A+B
/* si, ti and pi are 8-bit integer.

Ai, Bi, Di and Gi are ω-bit integer.
ci, mi are 1-bit integer. */

1 ⟨Di⟩n−1
i=0 ← SIMD ADD

(
⟨Ai⟩n−1

i=0 , ⟨Bi⟩n−1
i=0

)
2 Use SIMD to calculate ti and pi as in Table II in

parallel.
3 (sn−1, . . . , s0)← (tn−1, . . . , t1) + (pn−1, . . . , p1) (We

use the carry-propagation addition method here, but
with far fewer limbs than in the addition of A and B.)

4 ⟨si⟩n−1
i=0 ← SIMD SUB

(
⟨si⟩n−1

i=0 , ⟨ti⟩
n−1
i=0

)
5 ⟨ci⟩n−1

i=0 ← SIMD SUB
(
⟨si⟩n−1

i=0 , ⟨pi⟩
n−1
i=0

)
6 ⟨Di⟩n−1

i=0 ← SIMD ADD
(
⟨Di⟩n−1

i=0 , ⟨ci⟩
n−1
i=0

)
7 return D =

∑n−1
i=0 2i·ωDi

Consider the addition of Ai and Bi. The addition can be
classified into one of the following three cases. We refer to
the case corresponding to the i-th lane as Li ∈ {N ,P ,G}.

• Case Li = N : The addition would Not generate a carry,
which implies ci+1 = 0, regardless of ci.

• Case Li = P : The addition would Propagate carry from
previous limb, which implies ci+1 = ci.

• Case Li = G: The addition would Generate a carry,
which implies ci+1 = 1, regardless of ci.

Even without knowing the operands A,B, the carries for all
limbs can be determined by the value of Li. For example,
when (L2, L1, L0) = (N ,P ,G), the carries (c3, c2, c1, c0) =
(0, 1, 1, 0) because

• L0 = G would give c1 = 1,
• L1 = P would propagate c1 to c2 and give c2 = c1 = 1,
• L2 = N would give c3 = 0.
Algorithm ProposedAdd employs this principle to transform

a larger addition A+B = (An−1, . . . , A0)+ (Bn−1, . . . , B0)
into a smaller one t+ p = (tn−1, . . . , t0) + (pn−1, . . . , p0).
Assume that the sum of ti and pi corresponds to the case
L′
i. The values of ti and pi are determined such that L′

i = Li.
This guarantees that the carry-overs from adding ti and pi
align with those from adding Ai and Bi.

Table II illustrates the process of converting a large addition
to a small one. Each line in the “Algorithm” column of Table II
corresponds to an assembly instruction. The first two rows of
the table are similar, except for the carry-checking approach
and the choice of pi.

We opted for 8-bit integers for pi and ti because it is
efficient to transfer data across 8-bit lanes in AVX-512 and
SVE. While it is feasible to convert each limb to a 1-bit
addition, we have not discovered an efficient method for such
a conversion in SVE. Since the addition in Line 5 needs a
cross-lane operation, we made pi independent of Ai and Bi.
Consequently, pi can be considered a constant and can be
loaded from memory. We can show the correctness of the
algorithm by the following lemmas and theorem.

Lemma 1. The additions of ti and pi obtained from Table II
falls into the same case as the additions of Ai and Bi.

Proof. We demonstrate that the additions of ti and pi align
with the same case as Ai and Bi, as shown in the third, fourth,
fifth, and sixth columns of Table II. These columns represent
the outcomes derived from each computation step for every
instruction set and radix and for every Li ∈ {N,P,G}.

Lemma 2. The carry ci obtained at Line 5 of Algo-
rithm ProposedGenericRedc is same as the carry ci in the
addition of Ai and Bi

Proof. By Lemma 1, the addition at Line 3 of the algorithm
shares the same case as Ai and Bi. The carry-over resulting
from adding ti−1 and pi−1 to the sum of ti and pi matches
the carry-over from adding Ai−1 and Bi−1 to the sum of Ai

and Bi. This carry-over is ci. This implies that si = (ti +
pi + ci) mod 28. The value of ci can be computed by taking
si − ti − pi, as indicated at Lines 4-5 of the algorithm.

Theorem 1. Algorithm ProposedAdd calculates the addition
results of A and B.

Proof. By Lemma 2, the desirable value of ci is obtained at
Line 5 of the algorithm. Then, Di = (Di + ci) mod 2ω =
(Ai +Bi + ci) mod 2ω , which is the desirable result, at the
i-th limb at Line 6.

The concepts of Algorithm ProposedAdd are demonstrated
in the subsequent example:

Example 1. Consider an example where ω = 16, n = 4,
A0 = 60000, B0 = 5536, A1 = 50000, B1 = 15535, A2 =

10000, B2 = 10000, A3 = 20000, and B3 = 20000. Assume
that the numbers are represented using the native radix.

The sum of A0 and B0 invariably generates a carry. In
contrast, the sum of A1 and B1 propagates a carry, while
the sum of A2 and B2 does not generate a carry. There-
fore, (L2, L1, L0) is (N ,P ,G). Applying the SIMD ADD
function from Line 1 of Algorithm ProposedAdd yields
(D3, D2, D1, D0) = (40000, 20000, 65535, 0).

Using the native radix as a basis, the values of ti and pi are
computed according to the first row in Table II. This results
in (G3, G2, G1, G0) = (5, 5, 16, 0), (m3,m2,m1,m0) =
(0, 0, 0, 1), and (t3, t2, t1, t0) = (5, 5, 16, 17).

Since (p3, p2, p1, p0) = (239, 239, 239, 239), the summation
performed at Line 3 produces the outcome (s3, s2, s1, s0) =
(196, 197, 0, 0). After applying the SIMD SUB function at
Lines 4-5, (c3, c2, c1, c0) = (0, 1, 1, 0). This represents the
expected carry for this addition. The final result derived from
Line 6 is (D3, D2, D1, D0) = (40000, 20001, 0, 0), which
aligns with the expectations.

V. PROPOSED SIMD MONTGOMERY REDUCTION

A. Optimization for General Prime Numbers

Algorithm ExistingGenericRedc can be directly imple-
mented with SIMD. However, Line 3 of the algorithm incurs
significant computation cost due to its reliance on a cross-lane
broadcast operation and a costly multiplication instruction, as
documented in Table I. Additionally, Line 4 in the algorithm is
dependent on the completion of Line 3, and Line 3 must wait
for the result of Line 4 in the previous iteration. These loop de-
pendencies hinder the CPU pipeline’s throughput, which is not
a significant issue when using general instruction sets, where
Line 4’s computation time dominates. However, on SIMD, the
computation time of Line 4 is much shorter, while Line 3’s
cost increases, making it a significant concern. To address this
problem, we have devised Algorithm ProposedGenericRedc.

The function SIMD MUL nx1, found at Line 2 of Al-
gorithm ProposedGenericRedc, computes the multiplication
result of the n-limb integer Mi and the one-limb integer Ti for
all 1 ≤ i ≤ n− 2, deploying SIMD instructions. Considering
the n limbs of Mi as Mi,0, . . . ,Mi,n−1, the multiplication
outcome can be calculated via the following steps: 1) First,
calculate ⟨Uj⟩n−1

j=0 = SIMD MUL H
(
⟨Mi,j⟩n−1

j=0 , ⟨Zj⟩n−1
j=0

)
when Zj = Ti for all 0 ≤ j ≤ n− 1; 2) Calculate ⟨Yj⟩n−1

j=0 =

SIMD MUL L
(
⟨Mi,j⟩n−1

j=0 , ⟨Zj⟩n−1
j=0

)
when Zj = Ti for all

0 ≤ j ≤ n − 1; 3) Calculate Hi =
∑n−1

j=0 Uj2
ω(j+1) +∑n−1

j=0 Yj2
ωj using the Algorithm ProposedAdd in Section IV.

To show the correctness of Algo-
rithm ProposedGenericRedc, we consider the following
lemmas and theorem:

Lemma 3. REDC(T) ≡ T (n−2)r−2 (mod p).

Algorithm ProposedGenericRedc: Proposed SIMD
generic Montgomery reduction
Input: T < pR, p < 2ωn, r = 2ω, R = 2ωn, n > 2,

Mi ≡ r−n+i+1 (mod p) for 1 ≤ i ≤ n− 2,
p′ ← rr−1−1

p

Output: TR−1 mod p
1 Let Ti be ⌊T/ri−1⌋ mod r, i.e. T = (T2n, . . . , T1)
2 ⟨Hi⟩n−2

i=1 ← SIMD MUL nx1
(
⟨Mi⟩n−2

i=1 , ⟨Ti⟩n−2
i=1

)
3 T (n−2) ← ⌊T/rn−2⌋+

∑n−2
i=1 Hi

4 for i← n− 1 to n do
5 Q← T (i−1)p′ mod r
6 T (i) ← (T (i−1) +Qp)/r
7 end
8 if T (n) > p then
9 T (n) ← T (n) − p

10 if T (n) > p then
11 T (n) ← T (n) − p
12 return T (n)

Proof. We can derive that:

(1)

REDC(T) ≡ TR−1

≡

(
⌊T/rn−2⌋ · rn−2 +

n−2∑
i=1

Tir
i−1

)
r−n

≡

(
⌊T/rn−2⌋+

n−2∑
i=1

Tir
−n+i+1

)
r−2

≡

(
⌊T/rn−2⌋+

n−2∑
i=1

TiMi

)
r−2

≡

(
⌊T/rn−2⌋+

n−2∑
i=1

Hi

)
r−2

≡ T (n−2)r−2 (mod p)

Lemma 4. The value of T (n) computed at Line 7 of Algo-
rithm ProposedGenericRedc is such that T (n) ≡ REDC(T)
(mod p).

Proof. It is straightforward from the definitions that
T (n−2) can be obtained at Line 3. Then, Lines 4-7
are used for calculating redc

(
T (n−2), 2ω

)
. By Lemma 3,

T (n) ≡ redc
(
T (n−2), 2ω

)
≡ T (n−2)r−2 ≡ REDC(T)

(mod p).

Lemma 5. The value of T (n) computed at Line 7 of Algorithm
ProposedGenericRedc is such that T (n) < 3p.

Proof. From Line 3 of Algorithm ProposedGenericRedc,
T (n−2) = ⌊T/rn−2⌋ +

∑n−2
i=1 Hi < r2p + (n − 2)rp. Then,

T (n−1) = T (n−2)+Qp
r < r2p+(n−2)rp+(r−1)p

r < 2rp. In
addition, T (n) = T (n−1)+Qp

r < 2rp+(r−1)p
r < 3p.

TABLE II: Algorithms for operands of 8-bit additions, which are capable of simulating ω-bit additions along with the outcomes

Radix Architecture Operand 1 (ti) Operand 2 (pi)
Algorithm Li = N Li = P Li = G Algorithm

Native
Radix

AVX-512
SVE

Gi ← popcnt(Di)
mi ← (Di < Ai)

ti ← mADD(Gi, ω + 1,mi)

0 ≤ Gi < ω
mi = 0
ti < ω

Gi = ω
mi = 0
ti = ω

0 ≤ Gi < ω
mi = 1
ti > ω

pi ← 255− ω

Reduced
Radix-2k

AVX-512
Gi ← popcnt(Di)
mi ← (Di ≥ 2k)

ti ← mADD(Gi, k,mi)

0 ≤ Gi < k
mi = 0
ti < k

Gi = k
mi = 0
ti = k

0 < Gi ≤ k
mi = 1
ti > k

pi ← 255− k

Reduced
Radix-2k SVE Gi ← SADD(Di, 2

ω − 2k − 1)
ti ← SSUB(Gi, 2

ω − 3)
Gi < 2ω − 2

ti = 0
Gi = 2ω − 2

ti = 1
Gi = 2ω − 1

ti = 2
pi ← 254

Note: popcnt(Di) =Number of 1 in binary representation of Di.
For this function, we utilize the VPOPCNTQ instruction in AVX-512 and the CNT instruction in SVE.
mADD(Gi, ω + 1,mi) = Gi + ω + 1 if mi else Gi

For this function, we utilize the VPADDQ instruction in AVX-512 and the ADD instruction in SVE.
SADD(x, y) = min(x+ y, 2ω − 1) For this function, we utilize the UQADD instruction in SVE.
SSUB(x, y) = max(x− y, 0) For this function, we utilize the UQSUB instruction in SVE.

Theorem 2. The value of T (n) computed at Line 12 of
Algorithm ProposedGenericRedc is such that T (n) = TR−1

mod p.

Proof. It is known from Lemma 4 and Lines 8-11 that T (n) ≡
TR−1 (mod p). Also, because T (n) is less than 3p at Line 7,
the value is less than p by the final reduction at Lines 8-11.
Hence, T (n) = TR−1 mod p.

When T < pR − (n − 2)rn−1p, it is worth noting that
similar reasoning can be employed to demonstrate that the
value of T (n) obtained at Line 7 is less than 2p. Therefore,
the instruction at Lines 10-11 can be skipped. This condition
holds for all the reductions in SIKE, CSIDH, and CTIDH, and
hence, there is no need to execute the instruction at Lines 10-
11 while implementing these cryptographic algorithms.

Algorithm ProposedGenericRedc requires additional mem-
ory reads, but this is not a problem as SIMD is efficient
at memory reads and the load/write units in CPUs are not
frequently used when computing Montgomery reduction.

Although Mi is considered a pre-calculated constant, no
information about p is required to calculate it. Instead,
it can be computed as Mi = REDC(ri−1) using Algo-
rithm ExistingGenericRedc. Therefore, the condition to use
Algorithm ProposedGenericRedc is the same as that for Al-
gorithm ExistingGenericRedc, and it can be applied to field
arithmetic where the prime is variable, such as in RSA.

The concepts of Algorithm ProposedGenericRedc are illus-
trated in the subsequent example.

Example 2. Set ω = 4, r = 24 = 16, n = 4, R = 216 =
65536, and p = 62207. Given that (M1,M2) = (3888, 243),
and p′ equals to 1.

Suppose T = 100000000, which leads to
(T8, . . . , T1) = (0, 5, 15, 5, 14, 1, 0, 0) as per Line 1 of
Algorithm ProposedGenericRedc. By Line 2, H1 = H2 = 0,
and Line 3 gives T (2) = T/256 + 0 = 390625.

In the loop’s first iteration from Lines 4-7, Q = 390625
mod 16 = 1 and T (3) = (390625 + 1× 62207)/16 = 28302.
By the second iteration, Q = 28302 mod 16 = 14 and
T (4) = (28302 + 14× 62207)/16 = 56200.

As T (4) = 56200 is already less than p, the final reductions
at Lines 8-11 are not needed. Therefore, the result of this
Montgomery reduction is 56200.

B. Optimization for Primes in the Form 2ℓF − 1

We observe that the prime number p used in several cryp-
tographic systems such as SIKE [1] or SQISign [28] can be
written in the form of p = 2ℓF−1 when F and 2ℓ are large in-
tegers. In this subsection, we aim to give an improvement over
Algorithm ExistingSpecificRedc for the case when 2ℓ ≈ F . In
particular, assume that ℓ < ⌈n/2⌉ω < ℓ+ ω.

We are using the prime number p503 = 22503159 − 1 to
demonstrate our idea, which can also be applied to other
prime numbers. The prime number is often used in the SIKE
cryptographic system [1]. When ω = 64, p503 can be used as
a 3-Montgomery-friendly modulus with n = 8 limbs for. In
Algorithm ExistingSpecificRedc, the PQCrypto-SIDH selected
m = 2 for p503 because it is the largest divisor of n that is
not greater than λ = 3. This means that four multiplications
between Q (two limbs) and M (four limbs) will be performed
at lines 4-7 of Algorithm ExistingSpecificRedc.

We aim to use the Karatsuba algorithm [30] to speed up the
multiplications. The Karatsuba algorithm allows us to reduce
the complexity of multiplying two multiple-limb numbers,
making it an attractive option for speeding up multiplications.
It is discussed in [5] that the algorithm can be efficiently
implemented in SIMD. However, the Karatsuba algorithm
would be less effective if operands do not have the same
number of limbs. Therefore, the Karatsuba algorithm cannot
be used in the situation stated in the previous paragraph as the
size of Q and F are not the same.

Our goal is to modify Algorithm ExistingSpecificRedc by
increasing the value of Q to a larger number such as one
with ⌈n/2⌉ω bits. For example, when dealing with the prime
number p503, instead of using a 128-bit value for Q in
Algorithm ExistingSpecificRedc, it is more preferable to use
a 256-bit value for Q. It is not possible to achieve this
by just simply replacing the value 2mω in Lines 6-7 of
Algorithm ExistingSpecificRedc with a larger number. Merely

replacing the component at the algorithm would result in an
incorrect reduction output.

Algorithm ProposedSpecificRedc: Proposed Mont-
gomery reduction with λ-Montgomery-friendly mod-
ulus

Input: T < pR, p = 2ℓF − 1 such that
ℓ < ⌈n/2⌉ω < ℓ+ ω,R = 2ωn > p

Output: TR−1 mod p
1 T (0) ← T
2 t(1) ← [T (0)F mod 2ω] · 2ℓ
3 Q(1) ← (T (0) + t(1)) mod 2⌈n/2⌉ω

4 T (1) ← ⌊(T (0) + 2ℓ · Karatsuba(Q(1), F))/2⌈n/2⌉ω⌋
5 if n is odd number then
6 Q(2) ← T (1) mod 2⌊n/2⌋ω

7 T (2) ← ⌊(T (1) + 2ℓ ·Karatsuba(Q(2), F))/2⌊n/2⌋ω⌋
8 else
9 t(2) ← [T (1)F mod 2ω] · 2ℓ

10 Q(2) ← (T (1) + t) mod 2⌈n/2⌉ω

11 T (2) ← ⌊(T (1) + 2ℓ ·Karatsuba(Q(2), F))/2⌈n/2⌉ω⌋
12 end
13 if T (2) > p then
14 T (2) ← T (2) − p
15 return T (2)

In order to yield a valid result for the reduction process,
the variables t(1) and t(2) are introduced at the second and
ninth line of Algorithm ProposedSpecificRedc, respectively.
Through the subsequent lemmas, we establish that by applying
these corrections, Algorithm ProposedSpecificRedc always
provides a correct output. First, let us consider the variable
t(1) at Line 2 and the variable t(2) at Line 9 of Algo-
rithm ProposedSpecificRedc.

Lemma 6. Let r = 2⌈n/2⌉ω. For i ∈ {1, 2}, t(i) ≡ T (i−1)F2ℓ

(mod r).

Proof. This lemma can be proved as follows:

t(i) mod r = (T (i−1)F mod 2ω) · 2ℓ mod 2⌈n/2⌉ω

= [(T (i−1)F mod 2ω) mod 2⌈n/2⌉ω−ℓ] · 2ℓ

= (T (i−1)F mod 2⌈n/2⌉ω−ℓ) · 2ℓ

= T (i−1)F2ℓ mod 2⌈n/2⌉ω.

Thus, t(i) ≡ T (i−1)F2ℓ (mod r)

In the following lemma, let us consider the variable Q(1)

at Line 3 and the variable Q(2) at Line 10 of Algo-
rithm ProposedSpecificRedc.

Lemma 7. Let r = 2⌈n/2⌉ω. For i ∈ {1, 2}, con-
sider Q(i) calculated at Line 3 and Line 10 of Algo-
rithm ProposedSpecificRedc. T (i−1) + pQ(i) is divisible by r.

Proof. From Lemma 6:

Q(i) ≡ T (i−1) + t(i)

≡ T (i−1) + 2ℓFT (i−1)

≡ T (i−1)(2ℓF + 1)

≡ T (i−1)(p+ 2) (mod r).

Because ⌈n/2⌉ω < ℓ+ω ≤ 2ℓ, we notice that 22ℓ is divisible
by r = 2⌈n/2⌉ω . Hence,

T (i−1) + pQ(i) ≡ T (i−1) + p(p+ 2)T (i−1)

≡ (p2 + 2p+ 1)T (i−1)

≡ (p+ 1)2T (i−1)

≡ 22ℓF 2T (i−1)

≡ 0 (mod r).

Lemma 8. The value T (1) calculated at Line 4 is
redc(T, ⌈n/2⌉ω). The value T (2) calculated at Line 7 and
Line 11 is redc(T, nω).

Proof. Let r = 2⌈n/2⌉ω. From Lemma 7:

(2)

⌊
T (0) + 2ℓQ(1) · F

r

⌋
≡
⌊
T (0) +Q(1)(p+ 1)

r

⌋
≡
⌊
T (0) +Q(1)p

r
+

Q(1)

r

⌋
≡ T (0) +Q(1)p

r
+

⌊
Q(1)

r

⌋
≡ T (0) +Q(1)p

r

≡ T (0)r−1 (mod p)

Hence, T (1) is redc(T (0), ⌈n/2⌉ω).
Next, let us consider the case when n is odd. In that case,

Lines 6-7 are used to calculate T (2). Let r′ = 2⌊n/2⌋ω . Then:

(3)

⌊
T (1) + 2ℓQ(2) · F

r′

⌋
≡
⌊
T (1) +Q(2)(p+ 1)

r′

⌋
≡
⌊
T (1) +Q(2)p

r′
+

Q(2)

r′

⌋
≡ T (1) +Q(2)p

r′
+

⌊
Q(2)

r′

⌋
≡ T (1) +Q(2)p

r′

≡ T (1)(r′)−1 (mod p).

Hence, T (2) is redc(T (1), ⌊n/2⌋ω) and, since ⌊n/2⌋ω +
⌈n/2⌉ω = nω, T (2) is redc(T (0), nω).

When n is even, the same argument as in (2) can be used
to show that T (2) is redc(T (1), ⌈n/2⌉ω) and, since ⌈n/2⌉ω+
⌈n/2⌉ω = nω, T (2) is redc(T (0), nω).

We are now ready to prove the correctness of Algo-
rithm ProposedSpecificRedc in the following theorem.

Theorem 3. The value T (2) returned at Line 15 of Algo-
rithm ProposedSpecificRedc is TR−1 mod p.

Proof. By Lemma 8, it is left to show that T (2) at Line
15 is smaller than p. By the same argument as in (2),
T (1) = T (0)+pQ(1)

2⌈n/2⌉ω < pR+p·2⌈n/2⌉ω

2⌈n/2⌉ω = p2⌊n/2⌋ω + p. Then,
by the same argument as (2) and (3), at Line 13, T (2) =
T (1)+p·Q(2)

2⌊n/2⌋ω < p·2⌊n/2⌋ω+p+p(2⌊n/2⌋ω−1)
2⌊n/2⌋ω = 2p. By the final

reduction at Lines 13-14, the result at Line 15 is smaller than
p.

Calculating the value of t(i) at Lines 2 and 9 is not
resource-intensive. The computation only necessitates the least
significant limb, which is derived from the product of the least
significant limb of T (0) and that of F . Moreover, the least
significant limb of Q(i) · F at Lines 4 and 11 is also equal
to T (i−1) · F mod 2ω . Consequently, the result of t(i) can be
reused at those points. This means that the introduction of
t(i) into Algorithm ProposedSpecificRedc incurs no additional
multiplication cost.

The bottleneck of Algorithm ProposedSpecificRedc lies in
the multiplications at Lines 4, 7, and 11. The Karatsuba
method is employed to perform these multiplications. To
demonstrate the efficiency of the proposed algorithm com-
pared to Algorithm ExistingSpecificRedc, we consider the
multiplication of 512-bit integers. As previously discussed, the
previous method requires four multiplications between 128-
bit integers (2 limbs) and 256-bit integers (4 limbs), with
each multiplication costing eight multiplication instructions.
Therefore, a total of 32 multiplication instructions are needed.
In contrast, the proposed method enables the reduction to be
performed by two multiplications between 256-bit integers (4
limbs). If one-level Karatsuba method is used for these mul-
tiplications, each 256-bit (4 limbs) integer multiplication can
be completed using 12 instructions, resulting in a total of 24
instructions. This reduces the number of SIMD multiplication
instructions from 32 to 24, resulting in greater efficiency.

Primes of the form 2ℓF − 1 are commonly employed
in isogeny-based cryptography. However, currently, only a
few algorithms such as SIKE and SIDH use primes where
ℓ < ⌈n/2⌉ω < ℓ + ω. One other algorithm that uses such
primes is Curve448, an elliptic curve cryptography algorithm
which utilizes p448 = 2448−2224−1. Unfortunately, a unique
property of p448 enables calculation of Fp448 without the need
for Montgomery reduction. Despite the current circumstances,
the employment of p448 in elliptic curve cryptography signals
the likelihood of more elliptic-curve based protocols using
primes that can be represented as 2ℓF − 1 in the future.

The concepts of Algorithm ProposedSpecificRedc are illus-
trated in the subsequent example. The inputs of the following
example is same as in Example 2.

Example 3. Set ω = 4, n = 4, R = 216 = 65536, p =
62207 = 28 · 243 − 1, and T = 100000000. The value of p
allows us to deduce that ℓ = 8 and F = 243.

At Line 3 of Algorithm ProposedSpecificRedc, the calcula-
tion is made that t(1) = [(100000000×243) mod 16]×28 =

TABLE III: Number of cycles of proposed SVE implementa-
tion for CTIDH-511 on A64FX

Operation A64 (cycles) SVE (cycles) Speedup
Addition 16.07 13.72 1.17x

Montgomery multiplication 406.98 258.96 1.57x
Scalar multiplication 39.98 18.68 2.14x

CTIDH Action 316,308,640 242,948,411 1.30x

0. Subsequent calculations yield Q(1) = 100000000 mod
256 = 0 and T (1) = ⌊100000000/28⌋ = 390625. Given
that n is an even number, Lines 9-11 of the algorithm are
used in this example. This results in t(2) = [(390625 ×
243) mod 16]× 28 = 768. Consequently, the results obtained
are Q(2) = (390625 + 768) mod 256 = 225, and T (2) =
⌊(390625 + 256 × 243 × 225)/256⌋ = 56200, which accord
with the output in Example 2.

VI. CASE STUDY AND EXPERIMENTAL RESULTS

This section will cover the implementation of prime field
arithmetic for various cryptography algorithms and architec-
tures. The benchmarks for ARM architecture are conducted on
Wisteria/BDEC-01 (Odyssey) with A64FX@2.20GHz, while
those for x64 architecture are run on Intel i7-1165G7 clocked
at 2701 MHz. The benchmark for field arithmetic involves
unrolling loops 80 times due to the calculation time being
too short. The results are the average of 800,000 repeti-
tions for field operations and 1,000 repetitions for the entire
cryptography algorithm. We utilize the compiler’s intrinsic to
execute the calculation for AVX-512, whereas assembly code
is employed for the tests on A64, x64, and SVE architectures.

A. CTIDH with SVE

Our implementation of CTIDH utilizes SVE with native
radix. While it is not ideal to assume the vector length of
SVE, we have assumed a 512-bit implementation for optimal
performance2.

Although Algorithm ProposedAdd has significantly im-
proved the performance of addition on SVE for Fp ad-
dition and subtraction, it is not significantly faster than
A64 implementation. Therefore, we perform Fp addition
and subtraction using A64. For Fp multiplication, we uti-
lize Algorithms ProposedAdd and ProposedGenericRedc. The
multiplication is carried out using an operand-scan tech-
nique, and the reduction step is implemented with Algo-
rithm ProposedGenericRedc. We use radix-256 for Lines 3-
5 in Algorithm ProposedGenericRedc instead of native radix,
allowing us to perform the reduction with only one partial
reduction in Lines 8-11, rather than two. This conversion
of radix can be accomplished with a single table lookup
instructions, since both radices is a multiple of 8.

Since p511 does not satisfy the condition for lazy correction,
we still need to correct the result after reduction. However, a
complete correction requires the carries for T (n) and T (n)−p

2Our CTIDH implementation is uploaded at https://github.com/splight793/
ARMv8-CTIDH.

https://github.com/splight793/ARMv8-CTIDH
https://github.com/splight793/ARMv8-CTIDH

to be both propagated, which we want to avoid since carry
propagation is still costly even with Algorithm ProposedAdd.
We therefore only check for the most significant word of
T (n) to determine whether to use T (n) − p, and we postpone
further correction until subtraction or equality testing becomes
necessary. Given that subtraction and equality testing occur
less frequently than multiplication, we believe that the tradeoff
is worthwhile.

We evaluated the proposed method against the state-of-the-
art CTIDH implementation proposed by Benegas et al. [3].
However, since there is no existing SVE assembly code
for their implementation, we adapted the assembly code for
CSIDH by Jalali et al. [16] using the concept outlined in the
CTIDH paper, and employed that code as our benchmark.
We also implement the code of our algorithms based on that
assembly code.

As shown in Table III, in SVE, the proposed SIMD addition
is 18% faster than the standard A64 addition. We attribute this
mainly to the benefit of SVE memory read-write capabilities.
While A64 addition is a memory-bound function, the proposed
SIMD addition is a compute-bound function. However, we
observed a slight decrease in performance when using the
proposed addition for CTIDH operations. This could be due
to the fact that the remaining CTIDH operations are primarily
compute-bound functions, and using A64 addition enables a
better distribution of work between the compute execution unit
and memory access execution unit.

Algorithm ProposedGenericRedc outperforms Jalali et al.’s
Montgomery multiplication implementation by 57%, and our
scalar multiplication is faster than the current state-of-the-
art implementation on A64 by 114%. The speedup of our
algorithm for CTIDH action is 30%. Nonetheless, if our SIMD
multiplication is utilized with a prime of 510 bits or less, the
resulting speedup would be even greater.

B. CSIDH with AVX-512
This section will present the results obtained by uti-

lizing AVX-512 with Algorithm ProposedAdd and Algo-
rithm ProposedGenericRedc3. We will compare the proposed
methods’ running time with two existing implementations,
namely:

1) The state-of-the-art implementation of constant-time
CSIDH on x64 by Cervantes-Vázquez et al. [18], which
employs the code from Castryck et al. [2] for Fp

arithmetic, and is based on the constant-time OAYT-style
CSIDH implementation.

2) The state-of-the-art implementation of constant-time
CSIDH in SIMD by Cheng et al. [5], which is a constant-
time OAYT-style CSIDH implementation on AVX-512.

It is worth mentioning that Cheng et al. [5] have also optimized
Fp511 squaring in their work, whereas Cervantes-Vázquez et
al. utilized the code for multiplication to perform squaring.

Cheng et al. [5] utilized a two-packed radix-243 representa-
tion to implement Fp511

arithmetic. This implies that an Fp511

3Our CSIDH implementation is uploaded at https://github.com/splight793/
AVX-CSIDH.

element is represented with 12 limbs, and three vector registers
are utilized to store the two operands. The storage order of
each limb is defined as follows:

(4)V = ⟨a, b⟩ =

[a0, a3, a6, a9 , b0, b3, b6, b9]
[a1, a2, a7, a10, b1, b4, b7, b10]
[a2, a5, a8, a11, b2, b5, b8, b11]

Our code for Algorithm ProposedGenericRedc is based

on Cheng et al.’s code [5]. In addition, we have performed
some extra calculations to evaluate the performance of Algo-
rithm ProposedAdd. Table IV presents the benchmark results
obtained from these calculations.

The top two rows of the table present the runtime per-
formance of Algorithm ProposedAdd compared to the carry
propagate addition implemented in x64 and AVX-512 when
calculating one instance. The results demonstrate that the
proposed algorithm’s runtime on AVX-512 is significantly
shorter than x64 and naive AVX-512 carry propagation.

The third row shows that naive AVX-512 carry propa-
gation is still slower than x64 for two-packed calculation.
We encountered some difficulties while implementing Algo-
rithm ProposedAdd with the input defined in (4). We found
that the following storage order is better for SIMD implemen-
tation.

(5)V ∗ = ⟨a, b⟩ =

[a0, b0, a3, b3, a6, b6, a9 , b9]
[a1, b1, a4, b4, a7, b7, a10, b10]
[a2, b2, a5, b5, a8, b8, a11, b11]

With this storage order, carries can be efficiently propagated
using 128-bit SSE instructions without any expensive cross-
lane operations. Row 3 has shown that it is very efficient
to implement with input defined as (5) using SSE. Although
the experiment in Row 3 has an input loaded from cache, it
is also efficient for SSE to calculate this carry propagation
with input stored in AVX-512 registers. AVX-512 supports an
instruction VEXTRACTI64x2, which allows CPU to read any
128-bit aligned lanes in an AVX-512 registers to SSE registers.
VEXTRACTI64x2 is a cross-lane instruction and have a CPI
of 1 and latency of 3. Since these reads are independent to each
other, SSE can handle input defined as (5) stored in AVX-512
register efficiently.

Performance results for Montgomery multiplication are pre-
sented in the fourth row of the table, indicating an improve-
ment of around 10% over Cheng et al.’s implementation [5].
While the proposed algorithm reduces the number of 52-bit
multiplications by 6%, we attribute the larger improvement
in computation time because the proposed algorithm gives a
more efficient CPU pipeline. The proposed algorithm can also
enhance the performance of Montgomery squaring. Compared
to the state-of-the-art algorithm, our implementation is 36%
faster in running time. This larger difference again confirms
that the proposed Algorithm ProposedGenericRedc have im-
proved CPU pipeline.

Row 6 of the table demonstrates that the proposed Mont-
gomery multiplication and squaring contribute to an improve-
ment in the CSIDH algorithm’s performance. Our implementa-

https://github.com/splight793/AVX-CSIDH
https://github.com/splight793/AVX-CSIDH

TABLE IV: Performance results of proposed AVX-512 implementation for CSIDH-511 on TigerLake

x64 Previous AVX-512 Implementations Our AVX-512 Implementation
Operation Number of cycles Number of cycles Speedup Number of cycles Speedup

Native Radix Addition
8 limbs 6.052 [18] 11.593 0.52x 4.589 1.32x

Radix-243 Addition
8 limbs 6.838 7.672 0.89x 5.280 1.30x

Radix-243 Carry Propagation
12 limbs, 2-packed 18.617* 23.493*[5] 0.79x 10.627** 1.75x

Montgomery Multiplication
2-packed 258.140 [18] 144.890 [5] 1.78x 131.066 1.97x

Montgomery Squaring
2-packed 262.103 [18] 141.696 [5] 1.85x 104.404 2.51x

CSIDH
Action 132,051,574 [18] 83,099,556 [5] 1.59x 74,491,118 1.77x

* Input defined as (4)
**Input defined as (5). Naive carry propagation using SSE.

TABLE V: Performance results of proposed Reduction for
SIKE in comparison with SIDHv3.5 on A64FX

Operation SIDHv3.5 new Reduction Speedup
Time (ns) Time (ns)

Reduction 196.84 156.48 1.26x
Keygen 36,749,182 35,204,915 1.04x

Encapsulation 60,642,713 56,449,034 1.07x
Decapsulation 65,017,001 60,901,455 1.07x

tion is 11% faster than Cheng et al.’s implementation and 77%
faster than Cervantes-Vázquez et al.’s x64 implementation.

C. SIKE on ARM64

In this section, we present our benchmark results for Al-
gorithm ProposedSpecificRedc using the SIKEp503 protocol
parameter4. This parameter set is widely recognized for its
use in both SIKE and SIDH. This section takes into account
the code from Microsoft’s SIDHv3.5 [23], a recognized highly
optimized implementation of an isogeny-based cryptosystem.
Modifications are performed to replace SIDHv3.5’s addition
and reduction operations with the newly proposed algorithms.
The comparative results showcasing the latency difference
before and after these alterations in SIDHv3.5 are presented
in Table V.

The proposed reduction method is 26% faster than the re-
duction method of SIDHv3.5, which is close to the theoretical
improvement where Comba has 33% more multiplications
than the one-level Karatsuba method. Regarding the overall
performance of SIKE, our implementation is 7% faster than
SIDHv3.5. As we optimized only the reduction method and
left many calculations of SIKE unchanged (e.g., multiplica-
tion), this result aligns with expectation.

D. Comparison with the Kogge-Stone Vector Addition

We have not included a comparison between the Kogge-
Stone vector addition [25] and the proposed addition algorithm
in Tables III-V, primarily because the code provided in [25]

4Our SIDH and SIKE implementations are uploaded at https://github.com/
splight793/PQCrypto-SIDH.

pertains to additions with carry, whereas we focus on the
addition without carry in these tables. Instead, we compare
our proposed addition algorithm with previous works in this
section.

We modify the addition algorithm detailed in [25] for
execution with SVE instructions. The average cycle count
for the addition with carry operation stands at 55.28 cycles.
However, our algorithm operates at a reduced count of 42.90
cycles. This performance difference reveals that our algorithm
delivers a 29% speed improvement in comparison to the state-
of-the-art addition algorithm in SVE. A reason which gives
the proposed algorithm a better efficiency is the fact that the
algorithm fixes the value of second operation (pi in Table I)
to a constant.

We have additionally carried out experiments employing
AVX-512 instructions. The average cycle count observed for
our algorithm stands at 6.41 cycles, in comparison to the
Kogge-Stone vector addition which has an average of 4.16
cycles. The fact that our algorithm lags behind the state-of-
the-art algorithm can be attributed to the relatively insignificant
cost of transferring from mask registers to general-purpose
ones in AVX-512. Therefore, our approach does not contribute
a significant improvement to the execution time.

E. Discussions
Our proposed addition and reduction algorithms have

demonstrated their ability to enhance the performance of state-
of-the-art SIMD algorithms in diverse scenarios. They have
also shown the potential to boost the performance of post-
quantum cryptographic protocols which rely on these oper-
ations. When compared to computations performed without
SIMD (x64 or A64), the speed enhancements derived from
our algorithm range from 1.17x to 2.51x.

One could conjecture an improvement closer to 8x, given
that SIMD allows for 8 simultaneous additions, subtractions,
and multiplications. However, as illustrated in Table I, the
latency of SIMD instructions typically exceeds that of x64 or
A64 instructions. The throughput (CPI) of AVX-512 is merely
2-4 times greater than that of x64. During our experimentation,
we also observed that the improvement in SVE is even less

https://github.com/splight793/PQCrypto-SIDH
https://github.com/splight793/PQCrypto-SIDH

noticeable, indicating that the expected speed up is unlikely
to be more than 2x. Additionally, SIMD requires the identical
execution of eight parallel operations. Due to dependencies be-
tween operations, arranging them to fully harness the potential
of SIMD is often impracticable. Considering these limitations,
we believe that an improvement in the range of 1.17x to 2.51x
is appreciable.

VII. CONCLUSIONS

This research demonstrates that SVE can significantly
enhance prime field arithmetic and cryptosystems such as
CTIDH. However, we have identified that the existing algo-
rithms for large addition and Montgomery reduction are not
efficient for SVE on A64FX, resulting in too many pipeline
stalls. To address this issue, we propose new algorithms for
addition and Montgomery reduction, which lead to a 30%
speedup for CTIDH. These algorithms are not limited to SVE
and have shown usefulness for AVX-512 as well. Additionally,
we provide an algorithm for SIKE to improve its Montgomery
reduction. Furthermore, we emphasize that addition should
be implemented using general-purpose instructions or shorter
SIMD to avoid the expensive cross-lane operation.

ACKNOWLEDGEMENT

This work is partially supported by JSPS Grant-in-Aid for
Transformative Research Areas A grant number JP21H05845,
and also by JST SICORP Grant Number JPMJSC2208, Japan.
The authors would like to thank anonymous reviewers and
Taku Onodera for several useful comments and ideas which
significantly improved this paper.

REFERENCES

[1] D. Jao, R. Azarderakhsh, M. Campagna, C. Costello, L. De Feo,
B. Hess, A. Jalali, B. Koziel, B. LaMacchia, P. Longa, M. Naehrig,
J. Renes, V. Soukharev, D. Urbanik, G. Pereira, K. Karabina, and
A. Hutchinson, “SIKE,” National Institute of Standards and Tech-
nology, Tech. Rep., 2022, available at https://csrc.nist.gov/Projects/
post-quantum-cryptography/round-4-submissions.

[2] W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes,
“CSIDH: An efficient post-quantum commutative group action,” in
ASIACRYPT 2018, Part III, ser. LNCS, T. Peyrin and S. Galbraith, Eds.,
vol. 11274. Springer, Heidelberg, Dec. 2018, pp. 395–427.

[3] G. Banegas, D. J. Bernstein, F. Campos, T. Chou, T. Lange, M. Meyer,
B. Smith, and J. Sotáková, “CTIDH: faster constant-time CSIDH,” IACR
TCHES, vol. 2021, no. 4, pp. 351–387, 2021, https://tches.iacr.org/index.
php/TCHES/article/view/9069.

[4] D. Kostic and S. Gueron, “Using the new vpmadd instructions for the
new post quantum key encapsulation mechanism sike,” in ARITH 2019,
2019, pp. 215–218.

[5] H. Cheng, G. Fotiadis, J. Großschädl, P. Y. A. Ryan, and P. B. Rønne,
“Batching CSIDH group actions using AVX-512,” IACR TCHES, vol.
2021, no. 4, pp. 618–649, 2021, https://tches.iacr.org/index.php/TCHES/
article/view/9077.

[6] A. Jalali, R. Azarderakhsh, M. M. Kermani, M. Campagna, and D. Jao,
“ARMv8 SIKE: Optimized supersingular isogeny key encapsulation on
ARMv8 processors,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 66, pp. 4209–4218, 11 2019.

[7] M. Anastasova, R. Azarderakhsh, and M. M. Kermani, “Time-optimal
design of finite field arithmetic for SIKE on Cortex-M4,” in WISA 2022,
2023, pp. 265–276.

[8] P. Ren, R. Suda, and V. Suppakitpaisarn, “Throughput-optimized im-
plementation of isogeny-based cryptography on vectorized ARM SVE
processor,” in CANDAR 2022, 2022, pp. 165–171.

[9] T. Edamatsu and D. Takahashi, “Efficient large integer multiplication
with ARM SVE instructions,” in AsiaHPC 2023, 2023, pp. 9–17.

[10] P. L. Montgomery, “Modular multiplication without trial division,”
Mathematics of computation, vol. 44, no. 170, pp. 519–521, 1985.

[11] H. Seo, Z. Liu, Y. Nogami, J. Choi, and H. Kim, “Hybrid mont-
gomery reduction,” ACM Transactions on Embedded Computing Systems
(TECS), vol. 15, no. 3, pp. 1–13, 2016.

[12] T. Edamatsu and D. Takahashi, “Accelerating large integer multiplication
using Intel AVX-512IFMA,” in ICA3PP 2019, 2020, pp. 60–74.

[13] A. Fog, “Instruction tables: List of instruction latencies, throughputs and
micro-operation breakdowns for Intel, AMD and VIA CPUs (2012),”
2022. [Online]. Available: http://www.agner.org/optimize/instruction
tables.pdf

[14] A64FX Microarchitecture Manual, Fujitsu, 2022, revision 1.8.1.
[15] A. Hutchinson, J. T. LeGrow, B. Koziel, and R. Azarderakhsh, “Further

optimizations of CSIDH: A systematic approach to efficient strategies,
permutations, and bound vectors,” in ACNS 20, Part I, ser. LNCS,
M. Conti, J. Zhou, E. Casalicchio, and A. Spognardi, Eds., vol. 12146.
Springer, Heidelberg, Oct. 2020, pp. 481–501.

[16] A. Jalali, R. Azarderakhsh, M. M. Kermani, and D. Jao, “Towards
optimized and constant-time CSIDH on embedded devices,” in COSADE
2019, ser. LNCS, I. Polian and M. Stöttinger, Eds., vol. 11421. Springer,
Heidelberg, Apr. 2019, pp. 215–231.

[17] H. Onuki, Y. Aikawa, T. Yamazaki, and T. Takagi, “A faster constant-
time algorithm of CSIDH keeping two points,” Cryptology ePrint
Archive, Report 2019/353, 2019, https://eprint.iacr.org/2019/353.

[18] D. Cervantes-Vázquez, M. Chenu, J.-J. Chi-Domı́nguez, L. De Feo,
F. Rodrı́guez-Henrı́quez, and B. Smith, “Stronger and faster side-channel
protections for CSIDH,” in LATINCRYPT 2019, ser. LNCS, P. Schwabe
and N. Thériault, Eds., vol. 11774. Springer, Heidelberg, Oct. 2019,
pp. 173–193.

[19] D. Jao and L. De Feo, “Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies,” in Post-Quantum Cryptography -
4th International Workshop, PQCrypto 2011, B.-Y. Yang, Ed. Springer,
Heidelberg, Nov. / Dec. 2011, pp. 19–34.

[20] W. Castryck and T. Decru, “An efficient key recovery attack on SIDH
(preliminary version),” Cryptology ePrint Archive, Report 2022/975,
2022, https://eprint.iacr.org/2022/975.

[21] L. Maino and C. Martindale, “An attack on SIDH with arbitrary
starting curve,” Cryptology ePrint Archive, Report 2022/1026, 2022,
https://eprint.iacr.org/2022/1026.

[22] D. Robert, “Breaking SIDH in polynomial time,” Cryptology ePrint
Archive, Report 2022/1038, 2022, https://eprint.iacr.org/2022/1038.

[23] Microsoft, “PQCrypto-SIDH,” 2020. [Online]. Available: https://github.
com/Microsoft/PQCrypto-SIDH

[24] O. J. Bedrij, “Carry-select adder,” IRE Transactions on Electronic
Computers, no. 3, pp. 340–346, 1962.

[25] A. Yee, “Integer addition and carryout,” http://www.numberworld.org/
y-cruncher/internals/addition.html#ks add, Feb. 2019.

[26] P. M. Kogge and H. S. Stone, “A parallel algorithm for the efficient
solution of a general class of recurrence equations,” IEEE Transactions
on Computers, vol. 100, no. 8, pp. 786–793, 1973.

[27] A. Faz-Hernández, J. López, E. Ochoa-Jiménez, and F. Rodrı́guez-
Henrı́quez, “A faster software implementation of the supersingular
isogeny Diffie-Hellman key exchange protocol,” IEEE Transactions on
Computers, vol. 67, no. 11, pp. 1622–1636, 2017.

[28] L. De Feo, A. Leroux, and B. Wesolowski, “New algorithms for the
deuring correspondence: SQISign twice as fast,” Cryptology ePrint
Archive, Report 2022/234, 2022, https://eprint.iacr.org/2022/234.

[29] J. Doliskani, G. C. C. F. Pereira, and P. S. L. M. Barreto, “Faster
cryptographic hash function from supersingular isogeny graphs,” Cryp-
tology ePrint Archive, Report 2017/1202, 2017, https://eprint.iacr.org/
2017/1202.

[30] A. A. Karatsuba and Y. P. Ofman, “Multiplication of many-digital
numbers by automatic computers,” in Doklady Akademii Nauk, vol. 145,
no. 2. Russian Academy of Sciences, 1962, pp. 293–294.

https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://tches.iacr.org/index.php/TCHES/article/view/9069
https://tches.iacr.org/index.php/TCHES/article/view/9069
https://tches.iacr.org/index.php/TCHES/article/view/9077
https://tches.iacr.org/index.php/TCHES/article/view/9077
http://www.agner.org/optimize/instruction_tables.pdf
http://www.agner.org/optimize/instruction_tables.pdf
https://eprint.iacr.org/2019/353
https://eprint.iacr.org/2022/975
https://eprint.iacr.org/2022/1026
https://eprint.iacr.org/2022/1038
https://github.com/Microsoft/PQCrypto-SIDH
https://github.com/Microsoft/PQCrypto-SIDH
http://www.numberworld.org/y-cruncher/internals/addition.html#ks_add
http://www.numberworld.org/y-cruncher/internals/addition.html#ks_add
https://eprint.iacr.org/2022/234
https://eprint.iacr.org/2017/1202
https://eprint.iacr.org/2017/1202

	Introduction
	Our Contributions

	Preliminaries
	Large Integer Representation
	Single Instruction Multiple Data (SIMD)
	Isogeny-based Cryptography: CSIDH, CTIDH, and SIKE

	Previous Approachs on Additions and Montgomery Reductions
	Carry-Propagate Addition
	Carry-Select Addition bedrij1962carry
	Kogge-Stone Vector Addition
	Montgomery Reduction montgomery1985modular
	Montgomery Representation and Multiplication
	More Efficient Montgomery Reduction for Primes in the Form 2^F - 1 faz2017faster

	Proposed SIMD Addition
	Proposed SIMD Montgomery Reduction
	Optimization for General Prime Numbers
	Optimization for Primes in the Form 2^F - 1

	Case Study and Experimental Results
	CTIDH with SVE
	CSIDH with AVX-512
	SIKE on ARM64
	Comparison with the Kogge-Stone Vector Addition
	Discussions

	Conclusions
	References

